首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:On the Existence Conditions for Balanced Fractional $2^{m}$ Factorial Designs of Resolution $\mathrm{R}^{\ast}(\{1\}|\mathrm{\Omega}_{\ell})$ with $N<\nu_{\ell}(m)$
  • 本地全文:下载
  • 作者:Yoshifumi Hyodo ; Masahide Kuwada ; Hiromu Yumiba
  • 期刊名称:International Journal of Statistics and Probability
  • 印刷版ISSN:1927-7032
  • 电子版ISSN:1927-7040
  • 出版年度:2016
  • 卷号:5
  • 期号:4
  • 页码:84
  • DOI:10.5539/ijsp.v5n4p84
  • 出版社:Canadian Center of Science and Education
  • 摘要:

    We consider a fractional $2^{m}$ factorial design derived from a simple array (SA) such that the $(\ell+1)$-factor and higher-order interactions are assumed to be negligible, where $2\ell\le m$. Under these situations, if at least the main effect is estimable, then a design is said to be of resolution $\mathrm{R}^{\ast}(\{1\}|\mathrm{\Omega}_{\ell})$. In this paper, we give a necessary and sufficient condition for an SA to be a balanced fractional $2^{m}$ factorial design of resolution $\mathrm{R}^{\ast}(\{1\}|\mathrm{\Omega}_{\ell})$ for $\ell=2,3$, where the number of assemblies is less than the number of non-negligible factorial effects. Such a design is concretely characterized by the suffixes of the indices of an SA.

国家哲学社会科学文献中心版权所有