摘要:Chemical Looping Combustion (CLC) is a technology that allows the separation of CO 2 , which is generated by the combustion of fossil fuels. The majority of process designs currently under investigation are systems of coupled fluidized beds. Advances in the development of power generation system using CLC cannot be introduced without using numerical modelling as a research tool. The primary and critical activity in numerical modelling is the computational domain discretization. It influences the numerical diffusion as well as convergence of the model and therefore the overall accuracy of the obtained results. Hence an innovative approach of computational domain discretization using polyhedral (POLY) mesh is proposed in the paper. This method reduces both the numerical diffusion of the mesh as well as the time cost of preparing the model for subsequent calculation. The major advantage of POLY mesh is that each individual cell has many neighbours, so gradients can be much better approximated in comparison to commonly-used tetrahedral (TET) mesh. POLYs are also less sensitive to stretching than TETs which results in better numerical stability of the model. Therefore detailed comparison of numerical modelling results concerning subsection of CLC system using tetrahedral and polyhedral mesh is covered in the paper.