期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2017
卷号:15
期号:1
页码:179-189
DOI:10.12928/telkomnika.v15i1.4507
语种:English
出版社:Universitas Ahmad Dahlan
摘要:Data gathering is an attractive operation for obtaining information in wireless sensor networks (WSNs). But one of important challenges is to minimize energy consumption of networks. In this paper, an integration of distributed compressive sensing (CS) and virtual multi-input multi-output (vMIMO) in WSNs is proposed to significantly decrease the data gathering cost. The scheme first constructs a distributed data compression model based on low density parity check-like (LDPC-like) codes. Then a cluster-based dynamic virtual MIMO transmission protocol is proposed. The number of clusters, number of cooperative nodes and the constellation size are determined by a new established optimization model under the restrictions of compression model. Finally, simulation results show that the scheme can reduce the data gathering cost and prolong the sensor network’s lifetime in a reliable guarantee of sensory data recovery quality.
其他摘要:Data gathering is an attractive operation for obtaining information in wireless sensor networks (WSNs). But one of important challenges is to minimize energy consumption of networks. In this paper, an integration of distributed compressive sensing (CS) and virtual multi-input multi-output (vMIMO) in WSNs is proposed to significantly decrease the data gathering cost. The scheme first constructs a distributed data compression model based on low density parity check-like (LDPC-like) codes. Then a cluster-based dynamic virtual MIMO transmission protocol is proposed. The number of clusters, number of cooperative nodes and the constellation size are determined by a new established optimization model under the restrictions of compression model. Finally, simulation results show that the scheme can reduce the data gathering cost and prolong the sensor network’s lifetime in a reliable guarantee of sensory data recovery quality.
关键词:Data gathering; compressive sensing; virtual MIMO; energy optimazition;wireless sensor networks.