首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Image De-noising on Strip Steel Surface Defect Using Improved Compressive Sensing Algorithm
  • 本地全文:下载
  • 作者:Dongyan Cui ; Kewen Xia ; Jingzhong Hou
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2017
  • 卷号:15
  • 期号:1
  • 页码:540-548
  • DOI:10.12928/telkomnika.v15i1.3164
  • 语种:English
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:De-noising for the strip steel surface defect image is conductive to the accurate detection of the strip steel surface defects. In order to filter the Gaussian noise and salt and pepper noise of strip steel surface defect images, an improved compressive sensing algorithm was applied to defect image de-noising in this paper. First, the improved Regularized Orthogonal Matching Pursuit algorithm was described. Then, three typical surface defects (scratch, scar, surface upwarping) images were selected as the experimental samples. Last, detailed experimental tests were carried out to the strip steel surface defect image de-noising. Through comparison and analysis of the test results, the Peak Signal to Noise Ratio value of the proposed algorithm is higher compared with other traditional de-noising algorithm, and the running time of the proposed algorithm is only26.6\% of that of traditional Orthogonal Matching Pursuit algorithms. Therefore, it has better de-noising effect and can meet the requirements of real-time image processing.
  • 其他摘要:De-noising for the strip steel surface defect image is conductive to the accurate detection of the strip steel surface defects. In order to filter the Gaussian noise and salt and pepper noise of strip steel surface defect images, an improved compressive sensing algorithm was applied to defect image de-noising in this paper. First, the improved Regularized Orthogonal Matching Pursuit algorithm was described. Then, three typical surface defects (scratch, scar, surface upwarping) images were selected as the experimental samples. Last, detailed experimental tests were carried out to the strip steel surface defect image de-noising. Through comparison and analysis of the test results, the Peak Signal to Noise Ratio value of the proposed algorithm is higher compared with other traditional de-noising algorithm, and the running time of the proposed algorithm is only26.6\% of that of traditional Orthogonal Matching Pursuit algorithms. Therefore, it has better de-noising effect and can meet the requirements of real-time image processing.
国家哲学社会科学文献中心版权所有