首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Artificial and Natural Topic Detection in Online Social Networks
  • 本地全文:下载
  • 作者:Sylvio Barbon Jr ; Gabriel Marques Tavares ; Guilherme Sakaji Kido
  • 期刊名称:iSys - Revista Brasileira de Sistemas de Informação
  • 印刷版ISSN:1984-2902
  • 出版年度:2017
  • 卷号:10
  • 期号:1
  • 页码:80-98
  • 语种:English
  • 出版社:iSys - Revista Brasileira de Sistemas de Informação
  • 摘要:Online Social Networks (OSNs), such as Twitter, offer attractive means of social interactions and communications, but also raise privacy and security issues. The OSNs provide valuable information to marketing and competitiveness based on users posts and opinions stored inside a huge volume of data from several themes, topics, and subjects. In order to mining the topics discussed on an OSN we present a novel application of Louvain method for TopicModeling based on communities detection in graphs by modularity. The proposed approach succeeded in finding topics in five different datasets composed of textual content from Twitter and Youtube. Another important contribution achieved was about the presence of texts posted by spammers. In this case, a particular behavior observed by graph community architecture (density and degree) allows the indication of a topic strength and the classification of it as natural or artificial. The later created by the spammers on OSNs.
  • 其他摘要:Online Social Networks (OSNs), such as Twitter, offer attractive means of social interactions and communications, but also raise privacy and security issues. The OSNs provide valuable information to marketing and competitiveness based on users posts and opinions stored inside a huge volume of data from several themes, topics, and subjects. In order to mining the topics discussed on an OSN we present a novel application of Louvain method for TopicModeling based on communities detection in graphs by modularity. The proposed approach succeeded in finding topics in five different datasets composed of textual content from Twitter and Youtube. Another important contribution achieved was about the presence of texts posted by spammers. In this case, a particular behavior observed by graph community architecture (density and degree) allows the indication of a topic strength and the classification of it as natural or artificial. The later created by the spammers on OSNs.
国家哲学社会科学文献中心版权所有