首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:LVQ Clustering and SOM Using a Kernel Function
  • 本地全文:下载
  • 作者:Ryo INOKUCHI ; Sadaaki MIYAMOTO
  • 期刊名称:知能と情報
  • 印刷版ISSN:1347-7986
  • 电子版ISSN:1881-7203
  • 出版年度:2005
  • 卷号:17
  • 期号:1
  • 页码:88-94
  • DOI:10.3156/jsoft.17.88
  • 出版社:Japan Society for Fuzzy Theory and Intelligent Informatics
  • 摘要:This paper aims at discussing a clustering algorithm based on Learning Vector Quantization (LVQ) using a kernel function in support vector machines. Mapping object data into the high-dimensional feature space, this algorithm can find nonlinear boundaries between clusters which ordinary algorithms cannot find. The reason why kernel-based algorithms can find nonlinear clusters is that they may be linearly separated in the high-dimensional feature space. Nevertheless, actual configuration of data units in the high-dimensional feature space is unknown. Self-Organizing Map (SOM) associated with LVQ is hence applied with a kernel function. The resulting topological map for data in the high-dimensional feature space can visualize linearly separated clusters found by the proposed method. Numerical examples are given to show effectiveness of the proposed method when compared with fuzzy c-means and kernel-based fuzzy c-means.
  • 关键词:SOM ; LVQ ; Clustering ; Kernel function ; Support vector machine
国家哲学社会科学文献中心版权所有