首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:First-Person Vision Based Prediction of Information Seeking and Use Behavior in Library
  • 本地全文:下载
  • 作者:Kazushi OKAMOTO ; Kazuhiko KAWAMOTO
  • 期刊名称:知能と情報
  • 印刷版ISSN:1347-7986
  • 电子版ISSN:1881-7203
  • 出版年度:2017
  • 卷号:29
  • 期号:2
  • 页码:574-578
  • DOI:10.3156/jsoft.29.2_574
  • 出版社:Japan Society for Fuzzy Theory and Intelligent Informatics
  • 摘要:We propose an automated method for predicting subject behaviors based on first-person vision in an area surrounding bookshelves. The proposal classifies each frame within a movie recorded using a head-mounted camera to the six primitive behaviors according to naive Bayes nearest-neighbor method (NBNN). A prediction experiment is conducted using two image sequences recorded by a head-mounted camera. The experimental results confirm that the average classification rates for NBNN with random sampling (including principal components analysis) are improved from 0.09 to 0.13 for one data set and from 0.03 to 0.08 for the other data set compared with the bag-of-features and support vector machine combination results.
  • 关键词:classification ; information seeking and use behavior ; library ; naive Bayes nearest-neighbor ; principal components analysis
国家哲学社会科学文献中心版权所有