首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
  • 本地全文:下载
  • 作者:Marvin N. Wright ; Andreas Ziegler
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2017
  • 卷号:77
  • 期号:1
  • 页码:1-17
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:We introduce the C++ application and R package ranger. The software is a fast implementation of random forests for high dimensional data. Ensembles of classification, regression and survival trees are supported. We describe the implementation, provide examples, validate the package with a reference implementation, and compare runtime and memory usage with other implementations. The new software proves to scale best with the number of features, samples, trees, and features tried for splitting. Finally, we show that ranger is the fastest and most memory efficient implementation of random forests to analyze data on the scale of a genome-wide association study.
  • 关键词:C++;classification;machine learning;R;random forests;Rcpp;recursive partitioning;survival analysis
国家哲学社会科学文献中心版权所有