首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Iterative Bias Reduction Multivariate Smoothing in R: The ibr Package
  • 本地全文:下载
  • 作者:Pierre-André Cornillon ; Nicolas Hengartner ; Eric Matzner-Løber
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2017
  • 卷号:77
  • 期号:1
  • 页码:1-26
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:In multivariate nonparametric analysis curse of dimensionality forces one to use large smoothing parameters. This leads to a biased smoother. Instead of focusing on optimally selecting the smoothing parameter, we fix it to some reasonably large value to ensure an over-smoothing of the data. The resulting base smoother has a small variance but a substantial bias. In this paper, we propose an R package named ibr to iteratively correct the initial bias of the (base) estimator by an estimate of the bias obtained by smoothing the residuals. After a brief description of iterated bias reduction smoothers, we examine the base smoothers implemented in the package: Nadaraya-Watson kernel smoothers, Duchon splines smoothers and their low rank counterparts. Then, we explain the stopping rules available in the package and their implementation. Finally we illustrate the package on two examples: a toy example in R2 and the original Los Angeles ozone dataset.
  • 关键词:multivariate smoothing;L2 boosting;thin plate splines;kernel regression;R
国家哲学社会科学文献中心版权所有