首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Interannual correlations between sea surface temperature and concentration of chlorophyll pigment off Punta Eugenia, Baja California, during different remote forcing conditions
  • 本地全文:下载
  • 作者:Herrera-Cervantes, H. ; Lluch-Cota, S. E. ; Lluch-Cota, D. B.
  • 期刊名称:Ocean Science
  • 印刷版ISSN:1812-0784
  • 电子版ISSN:1812-0792
  • 出版年度:2014
  • 卷号:10
  • 期号:3
  • 页码:345-355
  • DOI:10.5194/os-10-345-2014
  • 出版社:Copernicus Publications
  • 摘要:Interannual correlation between satellite-derived sea surface temperature (SST) and surface chlorophyll a (Chl a) are examined in the coastal upwelling zone off Punta Eugenia on the west coast of the Baja California Peninsula, an area than has been identified as having intense biological productivity and oceanographic transition between midlatitude and tropical ocean conditions. We used empirical orthogonal functions (EOF) analysis separately and jointly on the two fields from 1997 through 2007, a time period dominated by different remote forcing: ENSO (El Niño–Southern Oscillation) conditions (weak, moderate and strong) and the largest intrusion of subarctic water reported in the last 50 years. Coastal upwelling index anomalies (CUI) and the multivariate ENSO index (MEI) were used to identify the influence of local (wind stress) and remote (ENSO) forcing over the interannual variability of both variables. The spatial pattern of the individual EOF1 analysis showed the greater variability of SST and Chl a offshore, their corresponding amplitude time series presented the highest peaks during the strong 1997–2000 El Niño–La Niña cycles and during the 2002–2004 period associated to the intrusion of subarctic water. The MEI is well correlated with the individual SST principal component (R ≈ 0.67, P < 0.05) and poorly with the individual Chl a principal component (R = −0.13). The joint EOF1 and the SST–Chl a correlation patterns show the area where both variables covary tightly; a band near the coast where the largest correlations occurred ( R 0.4) mainly regulated by ENSO cycles. This was spatially revealed when we calculated the homogeneous correlations for the 1997–1999 El Niño–La Niña period and during the 2002–2004 period, the intrusion of subarctic water period. Both, SST and Chl a showed higher coupling and two distinct physical–biological responses: on average ENSO influence was observed clearly along the coast mostly in SST, while the subarctic water influence, observed offshore and in Bahía Vizcaíno, mostly in Chl a. We found coastal chlorophyll blooms off Punta Eugenia during the 2002–2003 period, an enrichment pattern similar to that observed off the coast of Oregon. These chlorophyll blooms are likely linked to high wind stress anomalies during 2002, mainly at high latitudes. This observation may provide an explanation of why Punta Eugenia is one of the most important biological action centers on the Pacific coast.
国家哲学社会科学文献中心版权所有