首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A Review on Urdu Language Parsing
  • 本地全文:下载
  • 作者:Arslan Ali Raza ; Asad Habib ; Jawad Ashraf
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:4
  • DOI:10.14569/IJACSA.2017.080413
  • 出版社:Science and Information Society (SAI)
  • 摘要:Natural Language Processing is the multidisciplinary area of Artificial Intelligence, Machine Learning and Computational Linguistic for processing human language automatically. It involves understanding and processing of human language. The way through which we share our contents or feelings have always great importance in understanding and processing of language. Parsing is the most suited approach in identifying and scanning what the available sentences expressed? Parsing is the process in which syntactic structure of sentence is identified using grammatical tags. The syntactically correct sentence structure is achieved by assigning grammatical labels to its constituents using lexicon and syntactic rules. Phrase and Dependency are two main structure formalisms for parsing natural language sentences. The growing use of web 2.0 has produced novel research challenges as people from different geographical areas are using this channel and sharing contents in their native languages. Urdu is one of such free word order native language which is widely shared over social media sites but identification and summarization of Urdu sentences is challenging task. In this review paper we present an overview to recent work in parsing of fixed order (i.e. English) and free word order languages (i.e Urdu) in order to reveal the most suited method for Urdu Language Parsing. This survey explored that dependency parsing is more appropriate for Urdu and other free word order languages and parsers of English language are not useful in parsing Urdu sentence due to its morphological, syntactical and grammatical differences.
  • 关键词:Natural Language Processing; Machine Learning; Urdu Language Processing and Dependency Parsing
国家哲学社会科学文献中心版权所有