首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Modern Data Formats for Big Bioinformatics Data Analytics
  • 本地全文:下载
  • 作者:Shahzad Ahmed ; M. Usman Ali ; Javed Ferzund
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:4
  • DOI:10.14569/IJACSA.2017.080450
  • 出版社:Science and Information Society (SAI)
  • 摘要:Next Generation Sequencing (NGS) technology has resulted in massive amounts of proteomics and genomics data. This data is of no use if it is not properly analyzed. ETL (Extraction, Transformation, Loading) is an important step in designing data analytics applications. ETL requires proper understanding of features of data. Data format plays a key role in understanding of data, representation of data, space required to store data, data I/O during processing of data, intermediate results of processing, in-memory analysis of data and overall time required to process data. Different data mining and machine learning algorithms require input data in specific types and formats. This paper explores the data formats used by different tools and algorithms and also presents modern data formats that are used on Big Data Platform. It will help researchers and developers in choosing appropriate data format to be used for a particular tool or algorithm.
  • 关键词:Big Data; Machine Learning; Hadoop; MapReduce; Spark; Bioinformatics; Microarray; Data Models; Data Formats; Classification; Clustering
国家哲学社会科学文献中心版权所有