期刊名称:Journal of Computational Science and Technology
电子版ISSN:1881-6894
出版年度:2012
卷号:6
期号:2
页码:39-53
DOI:10.1299/jcst.6.39
出版社:The Japan Society of Mechanical Engineers
摘要:In ductile fracture, the cup and cone fracture that occurs at the neck of a specimen is produced by the coalescence of internal voids which in turn grow by plastic deformation under the influence of a prevailing stress triaxiality. In this work, our concern is with regard to hydrogen embrittlement phenomena, where the presence of hydrogen influences the ductile fracture. We correlate the micro-scale void growth to the macro-scale deformation at the center part of the tensile test model of α-Iron to simulate the hydrogen effects on macro- and micro-scale model simultaneously. The tensile test model is used to determine the hydrogen effects at the macro-scale while the internal void model is used to determine the influence of hydrogen on the void growth. Loads in micro-scale are imported from the displacement results at the center part of the macro-scale tensile model. Our findings show that the proposed approach is feasible and can be implemented to correlate the micro-scale void growth to the macro-scale deformation at the center part of the tensile test model of α-Iron in the presence of hydrogen. Due to limitations of experimental data for hydrogen-material interaction, only α-Iron is considered in this study.