摘要:Resumo: No Brasil, o comportamento da carga, em especial do consumo de energia, tem sido amplamente investigado nos últimos anos. Esse interesse, em geral, é devido à grande importância financeira e social desse insumo, pois sua falta pode causar todo tipo de dano ao país. O objetivo do presente trabalho é a geração de uma série mensal de carga elétrica livre das variações de ofensores não econômicos, no caso, calendário e temperatura. Foram comparadas duas abordagens com vistas à seleção da mais eficiente na remoção dos efeitos dos referidos ofensores: a primeira de natureza empírica e a segunda com características híbridas, utilizando métodos empíricos e modelos de Séries Temporais. Os dados utilizados são provenientes de observações diárias de cada um dos quatro subsistemas que integram o Sistema Interligado Nacional (SIN), porém a ideia é produzir séries mensais do SIN e não apenas de cada um dos subsistemas. A série trimestral do PIB foi utilizada para decidir qual abordagem melhor ajustou os dados de carga. Verificou-se que a diferença dos ajustes é mínima entre os métodos propostos, apresentando alto poder de explicação quando comparadas à série sem a retirada dos ofensores calendário e temperatura.
其他摘要:Abstract: In Brazil, the behavior of electrical load, particularly in energy consumption, has been widely investigated over the past years. In general, this interest is due to the great financial and social importance of this input, as its failure or shortage can have a variety of damaging impacts to the country. This paper proposes a method to generate monthly load series freed from variations arising from two sources: calendar and temperature. To find the best fitting approach to removing these effects, we considered a totally empirical method and one with hybrid features, as it uses both empirical procedures and time series models. The data set used comes from daily observations from each one of the four subsystems that form the Brazilian Electricity Grid. However, the final task is to obtain unique monthly series for the entire grid, and not only the four subsystems. The quarterly GDP series was used to check the performance of the two proposed methods. It was noted that the adjustment difference is minimal in the two approaches studied, and that both series had a great explanatory power when compared with the time series without removing calendar and temperature effects.