首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:A Self-Organizing Incremental Spatiotemporal Associative Memory Networks Model for Problems with Hidden State
  • 本地全文:下载
  • 作者:Zuo-wei Wang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/7158507
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Identifying the hidden state is important for solving problems with hidden state. We prove any deterministic partially observable Markov decision processes (POMDP) can be represented by a minimal, looping hidden state transition model and propose a heuristic state transition model constructing algorithm. A new spatiotemporal associative memory network (STAMN) is proposed to realize the minimal, looping hidden state transition model. STAMN utilizes the neuroactivity decay to realize the short-term memory, connection weights between different nodes to represent long-term memory, presynaptic potentials, and synchronized activation mechanism to complete identifying and recalling simultaneously. Finally, we give the empirical illustrations of the STAMN and compare the performance of the STAMN model with that of other methods.
国家哲学社会科学文献中心版权所有