首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Text Summarization Using FrameNet-Based Semantic Graph Model
  • 本地全文:下载
  • 作者:Xu Han ; Tao Lv ; Zhirui Hu
  • 期刊名称:Scientific Programming
  • 印刷版ISSN:1058-9244
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/5130603
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Text summarization is to generate a condensed version of the original document. The major issues for text summarization are eliminating redundant information, identifying important difference among documents, and recovering the informative content. This paper proposes a Semantic Graph Model which exploits the semantic information of sentence using FSGM. FSGM treats sentences as vertexes while the semantic relationship as the edges. It uses FrameNet and word embedding to calculate the similarity of sentences. This method assigns weight to both sentence nodes and edges. After all, it proposes an improved method to rank these sentences, considering both internal and external information. The experimental results show that the applicability of the model to summarize text is feasible and effective.
国家哲学社会科学文献中心版权所有