首页    期刊浏览 2024年11月14日 星期四
登录注册

文章基本信息

  • 标题:Estimation of Container Traffic at Seaports by Using Several Soft Computing Methods: A Case of Turkish Seaports
  • 本地全文:下载
  • 作者:Ümit Gökkuş ; Mehmet Sinan Yıldırım ; Metin Mutlu Aydin
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/2984853
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Container traffic forecasting is important for the operations and the design steps of a seaport facility. In this study, performances of the novel soft computing models were compared for the container traffic forecasting of principal Turkish seaports (Istanbul, Izmir, and Mersin seaports) with excessive container traffic. Four forecasting models were implemented based on Artificial Neural Network with Artificial Bee Colony and Levenberg-Marquardt Algorithms (ANN-ABC and ANN-LM), Multiple Nonlinear Regression with Genetic Algorithm (MNR-GA), and Least Square Support Vector Machine (LSSVM). Forecasts were carried out by using the past records of the gross domestic product, exports, and population of the Turkey as indicators of socioeconomic and demographic status. Performances of the forecasting models were evaluated with several performance metrics. Considering the testing period, the LSSVM, ANN-ABC, and ANN-LM models performed better than the MNR-GA model considering overall fitting and prediction performances of the extreme values in the testing data. The LSSVM model was found to be more reliable compared to the ANN models. Forecasting part of the study suggested that container traffic of the seaports will be increased up to 60%, 67%, and 95% at the 2023 for the Izmir, Mersin, and Istanbul seaports considering official growth scenarios of Turkey.
国家哲学社会科学文献中心版权所有