首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Generalized Characteristic Polynomials of Join Graphs and Their Applications
  • 本地全文:下载
  • 作者:Pengli Lu ; Ke Gao ; Yang Yang
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2017
  • 卷号:2017
  • DOI:10.1155/2017/2372931
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The Kirchhoff index of is the sum of resistance distances between all pairs of vertices of in electrical networks. is the Laplacian-Energy-Like Invariant of in chemistry. In this paper, we define two classes of join graphs: the subdivision-vertex-vertex join and the subdivision-edge-edge join . We determine the generalized characteristic polynomial of them. We deduce the adjacency (Laplacian and signless Laplacian, resp.) characteristic polynomials of and when is -regular graph and is -regular graph. As applications, the Laplacian spectra enable us to get the formulas of the number of spanning trees, Kirchhoff index, and of and in terms of the Laplacian spectra of and .
国家哲学社会科学文献中心版权所有