摘要:Apriori algorithm, as a typical frequent itemsets mining method, can help researchers and practitioners discover implicit associations from large amounts of data. In this work, a fast Apriori algorithm, called ECTPPI-Apriori, for processing large datasets, is proposed, which is based on an evolution-communication tissue-like P system with promoters and inhibitors. The structure of the ECTPPI-Apriori algorithm is tissue-like and the evolution rules of the algorithm are object rewriting rules. The time complexity of ECTPPI-Apriori is substantially improved from that of the conventional Apriori algorithms. The results give some hints to improve conventional algorithms by using membrane computing models.