摘要:Energy efficiency as well as fast data transmission is vital to green communications-based applications for Internet of Things (IoT). Wireless sensors, which constitute one of the important parts of IoT, adopt duty cycle operating mode to save energy. Although duty cycle operating mode will decrease the energy consumption of sensor nodes, it leads to a larger communication delay. In this paper, a utility-based adaptive duty cycle (UADC) routing algorithm is proposed to increase energy efficiency, reduce transmission delay, and keep long lifetime at the same time. First, UADC routing algorithm adopts a comprehensive performance evaluation function to evaluate the utility of choosing different relay nodes. Then it selects the node which maximizes the utility of the system to perform data relay. The utility function synthesizes comprehensive indexes like the reliability, energy consumption, and delay of the node. UADC routing algorithm adopts a high-duty cycle operating mode in the areas which have more remaining energy to decrease the delay. And a low-duty cycle operating mode in the energy-strained areas is adopted to ensure a long lifetime. The simulation results also prove the significant performances of our proposed algorithms.