首页    期刊浏览 2025年06月30日 星期一
登录注册

文章基本信息

  • 标题:Nonparametric Neural Network Estimation of Lyapunov Exponents and a Direct Test for Chaos
  • 作者:Oliver Linton ; Mototsugu Shintani May
  • 期刊名称:Econometrics Publications
  • 印刷版ISSN:0969-4366
  • 出版年度:2003
  • 出版社:Suntory Toyota International Centre for Economics and Related Disciplines
  • 摘要:This paper derives the asymptotic distribution of the nonparametric neural network estimator of the Lyapunov exponent in a noisy system. Positivity of the Lyapunov exponent is an operational definition of chaos. We introduce a statistical framework for testing the chaotic hypothesis based on the estimated Lyapunov exponents and a consistent variance estimator. A simulation study to evaluate small sample performance is reported. We also apply our procedures to daily stock return data. In most cases, the hypothesis of chaos in the stock return series is rejected at the 1% level with an exception in some higher power transformed absolute returns.
  • 关键词:artificial neural networks ; nonlinear dynamics ; nonlinear time series ; nonparametric regression ; sieve estimation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有