首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:LCN: a random graph mixture model for community detection in functional brain networks
  • 本地全文:下载
  • 作者:Christopher Bryant ; Hongtu Zhu ; Mihye Ahn
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2017
  • 卷号:10
  • 期号:3
  • 页码:369-378
  • DOI:10.4310/SII.2017.v10.n3.a1
  • 出版社:International Press
  • 摘要:The aim of this article is to develop a Bayesian random graph mixture model (RGMM) to detect the latent class network (LCN) structure of brain connectivity networks and estimate the parameters governing this structure. The use of conjugate priors for unknown parameters leads to efficient estimation, and a well-known nonidentifiability issue is avoided by a particular parameterization of the stochastic block model (SBM). Posterior computation proceeds via an efficient Markov Chain Monte Carlo algorithm. Simulations demonstrate that LCN outperforms several other competing methods for community detection in weighted networks, and we apply our RGMM to estimate the latent community structures in the functional resting brain networks of 185 subjects from the ADHD-200 sample. We find overlap in the estimated community structure across subjects, but also heterogeneity even within a given diagnosis group.
国家哲学社会科学文献中心版权所有