首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Empirical likelihood bivariate nonparametric maximum likelihood estimator with right censored data and continuous covariate
  • 本地全文:下载
  • 作者:Ren, Jian-Jian
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2017
  • 卷号:10
  • 期号:4
  • 页码:601-605
  • DOI:10.4310/SII.2017.v10.n4.a6
  • 语种:English
  • 出版社:International Press
  • 摘要:Recently, Ren and Riddlesworth (2014) derived the empirical likelihood-based bivariate nonparametric maximum likelihood estimator (BNPMLE) $\hat{F}_n (t, z)$ for the bivariate distribution function $F_0 (t, z)$ of survival time $T$ and covariate variable $Z$ based on bivariate data where $T$ is subject to right censoring. They showed that such BNPMLE $\hat{F}_n (t, z)$ is a consistent estimator of $F_0 (t, z)$ when variable $Z$ is discrete. Despite all nice properties of the BNPMLE $\hat{F}_n (t, z)$ shown in Ren and Riddlesworth (2014), in this article we show that surprisingly such $\hat{F}_n (t, z)$ is not a consistent estimator when the covariate variable $Z$ is continuous. On the other hand, interestingly our simulation studies suggest that some remedy adjustments on $\hat{F}_n (t, z)$ based on the usual empirical likelihood treatments and the censoring mechanism may provide consistent estimators for $F_0 (t, z)$ with continuous covariate $Z$.
  • 关键词:bivariate data; bivariate right censored data; empirical likelihood; maximum likelihood estimator; right censored data
国家哲学社会科学文献中心版权所有