期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:17
页码:4495-4500
DOI:10.1073/pnas.1704376114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Persistence, manifested as drug tolerance, represents a significant obstacle to global tuberculosis control. The bactericidal drugs isoniazid and rifampicin kill greater than 99% of exponentially growing Mycobacterium tuberculosis ( Mtb ) cells, but the remaining cells are persisters, cells with decreased metabolic rate, refractory to killing by these drugs, and able to generate drug-resistant mutants. We discovered that the combination of cysteine or other small thiols with either isoniazid or rifampicin prevents the formation of drug-tolerant and drug-resistant cells in Mtb cultures. This effect was concentration- and time-dependent, relying on increased oxygen consumption that triggered enhanced production of reactive oxygen species. In infected murine macrophages, the addition of N -acetylcysteine to isoniazid treatment potentiated the killing of Mtb . Furthermore, we demonstrate that the addition of small thiols to Mtb drug treatment shifted the menaquinol/menaquinone balance toward a reduced state that stimulates Mtb respiration and converts persister cells to metabolically active cells. This prevention of both persister cell formation and drug resistance leads ultimately to mycobacterial cell death. Strategies to enhance respiration and initiate oxidative damage should improve tuberculosis chemotherapies.