首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Bayesian posteriors for arbitrarily rare events
  • 本地全文:下载
  • 作者:Drew Fudenberg ; Kevin He ; Lorens A. Imhof
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:19
  • 页码:4925-4929
  • DOI:10.1073/pnas.1618780114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We study how much data a Bayesian observer needs to correctly infer the relative likelihoods of two events when both events are arbitrarily rare. Each period, either a blue die or a red die is tossed. The two dice land on side 1 with unknown probabilities p 1 and q 1 , which can be arbitrarily low. Given a data-generating process where p 1 ≥ c q 1 , we are interested in how much data are required to guarantee that with high probability the observer’s Bayesian posterior mean for p 1 exceeds ( 1 − δ ) c times that for q 1 . If the prior densities for the two dice are positive on the interior of the parameter space and behave like power functions at the boundary, then for every ϵ > 0 , there exists a finite N so that the observer obtains such an inference after n periods with probability at least 1 − ϵ whenever n p 1 ≥ N . The condition on n and p 1 is the best possible. The result can fail if one of the prior densities converges to zero exponentially fast at the boundary.
  • 关键词:rare event ; Bayes etimate ; uniform consistency ; multinomial distribution ; signaling game
国家哲学社会科学文献中心版权所有