期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:20
页码:5171-5176
DOI:10.1073/pnas.1701484114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:An experimental strategy has been developed to increase the efficiency of dynamic nuclear polarization (DNP) in solid-state NMR studies. The method makes assignments simpler, faster, and more reliable via sequential correlations of both side-chain and Cα resonances. The approach is particularly suited to complex biomolecules and systems with significant chemical-shift degeneracy. It was designed to overcome the spectral congestion and line broadening that occur due to sample freezing at the cryogenic temperatures required for DNP. Nonuniform sampling (NUS) is incorporated to achieve time-efficient collection of multidimensional data. Additionally, fast (25 kHz) magic-angle spinning (MAS) provides optimal sensitivity and resolution. Data collected in <1 wk produced a virtually complete de novo assignment of the coat protein of Pf1 virus. The peak positions and linewidths for samples near 100 K are perturbed relative to those near 273 K. These temperature-induced perturbations are strongly correlated with hydration surfaces.