首页    期刊浏览 2024年07月19日 星期五
登录注册

文章基本信息

  • 标题:Intersectin 1 is a component of the Reelin pathway to regulate neuronal migration and synaptic plasticity in the hippocampus
  • 本地全文:下载
  • 作者:Burkhard Jakob ; Gaga Kochlamazashvili ; Maria Jäpel
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:21
  • 页码:5533-5538
  • DOI:10.1073/pnas.1704447114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Brain development and function depend on the directed and coordinated migration of neurons from proliferative zones to their final position. The secreted glycoprotein Reelin is an important factor directing neuronal migration. Loss of Reelin function results in the severe developmental disorder lissencephaly and is associated with neurological diseases in humans. Reelin signals via the lipoprotein receptors very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), but the exact mechanism by which these receptors control cellular function is poorly understood. We report that loss of the signaling scaffold intersectin 1 (ITSN1) in mice leads to defective neuronal migration and ablates Reelin stimulation of hippocampal long-term potentiation (LTP). Knockout (KO) mice lacking ITSN1 suffer from dispersion of pyramidal neurons and malformation of the radial glial scaffold, akin to the hippocampal lamination defects observed in VLDLR or ApoER2 mutants. ITSN1 genetically interacts with Reelin receptors, as evidenced by the prominent neuronal migration and radial glial defects in hippocampus and cortex seen in double-KO mice lacking ITSN1 and ApoER2. These defects were similar to, albeit less severe than, those observed in Reelin-deficient or VLDLR/ ApoER2 double-KO mice. Molecularly, ITSN1 associates with the VLDLR and its downstream signaling adaptor Dab1 to facilitate Reelin signaling. Collectively, these data identify ITSN1 as a component of Reelin signaling that acts predominantly by facilitating the VLDLR-Dab1 axis to direct neuronal migration in the cortex and hippocampus and to augment synaptic plasticity.
  • 关键词:Reelin signaling ; hippocampus ; synaptic plasticity ; endocytosis ; multidomain scaffold
国家哲学社会科学文献中心版权所有