首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Visual cortex entrains to sign language
  • 本地全文:下载
  • 作者:Geoffrey Brookshire ; Jenny Lu ; Howard C. Nusbaum
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:24
  • 页码:6352-6357
  • DOI:10.1073/pnas.1620350114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ( < 8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language <5 Hz, peaking at ∼ 1 Hz. Coherence to sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.
  • 关键词:sign language ; cortical entrainment ; oscillations ; EEG
国家哲学社会科学文献中心版权所有