期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:24
页码:6370-6375
DOI:10.1073/pnas.1703809114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The frontal eye field (FEF) is a key brain region to study visuomotor transformations because the primary input to FEF is visual in nature, whereas its output reflects the planning of behaviorally relevant saccadic eye movements. In this study, we used a memory-guided saccade task to temporally dissociate the visual epoch from the saccadic epoch through a delay epoch, and used the local field potential (LFP) along with simultaneously recorded spike data to study the visuomotor transformation process. We showed that visual latency of the LFP preceded spiking activity in the visual epoch, whereas spiking activity preceded LFP activity in the saccade epoch. We also found a spatially tuned elevation in gamma band activity (30–70 Hz), but not in the corresponding spiking activity, only during the delay epoch, whose activity predicted saccade reaction times and the cells’ saccade tuning. In contrast, beta band activity (13–30 Hz) showed a nonspatially selective suppression during the saccade epoch. Taken together, these results suggest that motor plans leading to saccades may be generated internally within the FEF from local activity represented by gamma activity.