首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:AP1G mediates vacuolar acidification during synergid-controlled pollen tube reception
  • 本地全文:下载
  • 作者:Jia-Gang Wang ; Chong Feng ; Hai-Hong Liu
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:24
  • 页码:E4877-E4883
  • DOI:10.1073/pnas.1617967114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Double fertilization in angiosperms requires the delivery of immotile sperm through pollen tubes, which enter embryo sacs to initiate synergid degeneration and to discharge. This fascinating process, called pollen tube reception, involves extensive communications between pollen tubes and synergids, within which few intracellular regulators involved have been revealed. Here, we report that vacuolar acidification in synergids mediated by AP1G and V-ATPases might be critical for pollen tube reception. Functional loss of AP1G or VHA-A , encoding the γ subunit of adaptor protein 1 or the shared component of two endomembrane V-ATPases, respectively, impaired synergid-controlled pollen tube reception and caused partial female sterility. AP1G works in parallel to the plasma membrane-associated receptor FERONIA in synergids, suggesting that synergid-mediated pollen tube reception requires proper sorting of vacuolar cargos by AP1G. Although AP1G did not mediate the targeting of V-ATPases, AP1G loss of function or the expression of AP1G-RNAi compromised vacuolar acidification mediated by V-ATPases, implying their genetic interaction. We propose that vacuolar acidification might represent a distinct cell-death mechanism specifically adopted by the plant phylum, which is critical for synergid degeneration during pollen tube reception.
  • 关键词:adaptor protein 1 ; pollen tube reception ; vacuolar trafficking ; vacuolar acidification ; cell death
国家哲学社会科学文献中心版权所有