首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in Arabidopsis seeds
  • 本地全文:下载
  • 作者:Alexander T. Topham ; Rachel E. Taylor ; Dawei Yan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2017
  • 卷号:114
  • 期号:25
  • 页码:6629-6634
  • DOI:10.1073/pnas.1704745114
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Plants perceive and integrate information from the environment to time critical transitions in their life cycle. Some mechanisms underlying this quantitative signal processing have been described, whereas others await discovery. Seeds have evolved a mechanism to integrate environmental information by regulating the abundance of the antagonistically acting hormones abscisic acid (ABA) and gibberellin (GA). Here, we show that hormone metabolic interactions and their feedbacks are sufficient to create a bistable developmental fate switch in Arabidopsis seeds. A digital single-cell atlas mapping the distribution of hormone metabolic and response components revealed their enrichment within the embryonic radicle, identifying the presence of a decision-making center within dormant seeds. The responses to both GA and ABA were found to occur within distinct cell types, suggesting cross-talk occurs at the level of hormone transport between these signaling centers. We describe theoretically, and demonstrate experimentally, that this spatial separation within the decision-making center is required to process variable temperature inputs from the environment to promote the breaking of dormancy. In contrast to other noise-filtering systems, including human neurons, the functional role of this spatial embedding is to leverage variability in temperature to transduce a fate-switching signal within this biological system. Fluctuating inputs therefore act as an instructive signal for seeds, enhancing the accuracy with which plants are established in ecosystems, and distributed computation within the radicle underlies this signal integration mechanism.
  • 关键词:seed ; dormancy ; signal integration ; distributed control ; variability
国家哲学社会科学文献中心版权所有