首页    期刊浏览 2024年11月03日 星期日
登录注册

文章基本信息

  • 标题:KFAS: Exponential Family State Space Models in R
  • 本地全文:下载
  • 作者:Jouni Helske
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2017
  • 卷号:78
  • 期号:1
  • 页码:1-39
  • 语种:English
  • 出版社:University of California, Los Angeles
  • 摘要:State space modeling is an efficient and flexible method for statistical inference of a broad class of time series and other data. This paper describes the R package KFAS for state space modeling with the observations from an exponential family, namely Gaussian, Poisson, binomial, negative binomial and gamma distributions. After introducing the basic theory behind Gaussian and non-Gaussian state space models, an illustrative example of Poisson time series forecasting is provided. Finally, a comparison to alternative R packages suitable for non-Gaussian time series modeling is presented.
  • 关键词:R;exponential family;state space models;time series;forecasting;dynamic linear models
国家哲学社会科学文献中心版权所有