首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Range-Clustering Queries
  • 本地全文:下载
  • 作者:Mikkel Abrahamsen ; Mark de Berg ; Kevin Buchin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:5:1-5:16
  • DOI:10.4230/LIPIcs.SoCG.2017.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In a geometric k-clustering problem the goal is to partition a set of points in R^d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S: given a query box Q and an integer k > 2, compute an optimal k-clustering for the subset of S inside Q. We obtain the following results. * We present a general method to compute a (1+epsilon)-approximation to a range-clustering query, where epsilon>0 is a parameter that can be specified as part of the query. Our method applies to a large class of clustering problems, including k-center clustering in any Lp-metric and a variant of k-center clustering where the goal is to minimize the sum (instead of maximum) of the cluster sizes. * We extend our method to deal with capacitated k-clustering problems, where each of the clusters should not contain more than a given number of points. * For the special cases of rectilinear k-center clustering in R^1, and in R^2 for k = 2 or 3, we present data structures that answer range-clustering queries exactly.
  • 关键词:Geometric data structures; clustering; k-center problem
国家哲学社会科学文献中心版权所有