首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Faster Algorithms for the Geometric Transportation Problem
  • 本地全文:下载
  • 作者:Pankaj K. Agarwal ; Kyle Fox ; Debmalya Panigrahi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:7:1-7:16
  • DOI:10.4230/LIPIcs.SoCG.2017.7
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let R, B be a set of n points in R^d, for constant d, where the points of R have integer supplies, points of B have integer demands, and the sum of supply is equal to the sum of demand. Let d(.,.) be a suitable distance function such as the L_p distance. The transportation problem asks to find a map tau : R x B --> N such that sum_{b in B}tau(r,b) = supply(r), sum_{r in R}tau(r,b) = demand(b), and sum_{r in R, b in B} tau(r,b) d(r,b) is minimized. We present three new results for the transportation problem when d(.,.) is any L_p metric: * For any constant epsilon > 0, an O(n^{1+epsilon}) expected time randomized algorithm that returns a transportation map with expected cost O(log^2(1/epsilon)) times the optimal cost. * For any epsilon > 0, a (1+epsilon)-approximation in O(n^{3/2}epsilon^{-d}polylog(U)polylog(n)) time, where U is the maximum supply or demand of any point. * An exact strongly polynomial O(n^2 polylog n) time algorithm, for d = 2.
  • 关键词:transportation map; earth mover's distance; shape matching; approximation algorithms
国家哲学社会科学文献中心版权所有