首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences
  • 本地全文:下载
  • 作者:Martin Balko ; Josef Cibulka ; Pavel Valtr
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:12:1-12:16
  • DOI:10.4230/LIPIcs.SoCG.2017.12
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let d and k be integers with 1 0 is an arbitrarily small constant. This nearly settles a problem mentioned in the book of Brass, Moser, and Pach. We also find tight bounds for the minimum number of k-dimensional affine subspaces needed to cover the intersection of Lambda with K. We use these new results to improve the best known lower bound for the maximum number of point-hyperplane incidences by Brass and Knauer. For d > =3 and epsilon in (0,1), we show that there is an integer r=r(d,epsilon) such that for all positive integers n, m the following statement is true. There is a set of n points in R^d and an arrangement of m hyperplanes in R^d with no K_(r,r) in their incidence graph and with at least Omega((mn)^(1-(2d+3)/((d+2)(d+3)) - epsilon)) incidences if d is odd and Omega((mn)^(1-(2d^2+d-2)/((d+2)(d^2+2d-2)) - epsilon)) incidences if d is even.
  • 关键词:lattice point; covering; linear subspace; point-hyperplane incidence
国家哲学社会科学文献中心版权所有