首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Maximum Volume Subset Selection for Anchored Boxes
  • 本地全文:下载
  • 作者:Karl Bringmann ; Sergio Cabello ; Michael T. M. Emmerich
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:22:1-22:15
  • DOI:10.4230/LIPIcs.SoCG.2017.22
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let B be a set of n axis-parallel boxes in d-dimensions such that each box has a corner at the origin and the other corner in the positive quadrant, and let k be a positive integer. We study the problem of selecting k boxes in B that maximize the volume of the union of the selected boxes. The research is motivated by applications in skyline queries for databases and in multicriteria optimization, where the problem is known as the hypervolume subset selection problem. It is known that the problem can be solved in polynomial time in the plane, while the best known algorithms in any dimension d>2 enumerate all size-k subsets. We show that: * The problem is NP-hard already in 3 dimensions. * In 3 dimensions, we break the enumeration of all size-k subsets, by providing an n^O(sqrt(k)) algorithm. * For any constant dimension d, we give an efficient polynomial-time approximation scheme.
  • 关键词:geometric optimization; subset selection; hypervolume indicator; Klee's 23 measure problem; boxes; NP-hardness; PTAS
国家哲学社会科学文献中心版权所有