首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Applications of Chebyshev Polynomials to Low-Dimensional Computational Geometry
  • 本地全文:下载
  • 作者:Timothy M. Chan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:26:1-26:15
  • DOI:10.4230/LIPIcs.SoCG.2017.26
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We apply the polynomial method - specifically, Chebyshev polynomials - to obtain a number of new results on geometric approximation algorithms in low constant dimensions. For example, we give an algorithm for constructing epsilon-kernels (coresets for approximate width and approximate convex hull) in close to optimal time O(n + (1/epsilon)^{(d-1)/2}), up to a small near-(1/epsilon)^{3/2} factor, for any d-dimensional n-point set. We obtain an improved data structure for Euclidean *approximate nearest neighbor search* with close to O(n log n + (1/epsilon)^{d/4} n) preprocessing time and O((1/epsilon)^{d/4} log n) query time. We obtain improved approximation algorithms for discrete Voronoi diagrams, diameter, and bichromatic closest pair in the L_s-metric for any even integer constant s >= 2. The techniques are general and may have further applications.
  • 关键词:diameter; coresets; approximate nearest neighbor search; the polynomial method; streaming
国家哲学社会科学文献中心版权所有