首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees Strike Back
  • 本地全文:下载
  • 作者:Timothy M. Chan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:27:1-27:15
  • DOI:10.4230/LIPIcs.SoCG.2017.27
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We revisit the orthogonal range searching problem and the exact l_infinity nearest neighbor searching problem for a static set of n points when the dimension d is moderately large. We give the first data structure with near linear space that achieves truly sublinear query time when the dimension is any constant multiple of log n. Specifically, the preprocessing time and space are O(n^{1+delta}) for any constant delta>0, and the expected query time is n^{1-1/O(c log c)} for d = c log n. The data structure is simple and is based on a new "augmented, randomized, lopsided" variant of k-d trees. It matches (in fact, slightly improves) the performance of previous combinatorial algorithms that work only in the case of offline queries [Impagliazzo, Lovett, Paturi, and Schneider (2014) and Chan (SODA'15)]. It leads to slightly faster combinatorial algorithms for all-pairs shortest paths in general real-weighted graphs and rectangular Boolean matrix multiplication. In the offline case, we show that the problem can be reduced to the Boolean orthogonal vectors problem and thus admits an n^{2-1/O(log c)}-time non-combinatorial algorithm [Abboud, Williams, and Yu (SODA'15)]. This reduction is also simple and is based on range trees. Finally, we use a similar approach to obtain a small improvement to Indyk's data structure [FOCS'98] for approximate l_infinity nearest neighbor search when d = c log n.
  • 关键词:computational geometry; data structures; range searching; nearest neighbor searching
国家哲学社会科学文献中心版权所有