首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:High Dimensional Consistent Digital Segments
  • 本地全文:下载
  • 作者:Man-Kwun Chiu ; Matias Korman
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:31:1-31:15
  • DOI:10.4230/LIPIcs.SoCG.2017.31
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of digitalizing Euclidean line segments from R^d to Z^d. Christ {et al.} (DCG, 2012) showed how to construct a set of {consistent digital segments} (CDS) for d=2: a collection of segments connecting any two points in Z^2 that satisfies the natural extension of the Euclidean axioms to Z^d. In this paper we study the construction of CDSs in higher dimensions. We show that any total order can be used to create a set of {consistent digital rays} CDR in Z^d (a set of rays emanating from a fixed point p that satisfies the extension of the Euclidean axioms). We fully characterize for which total orders the construction holds and study their Hausdorff distance, which in particular positively answers the question posed by Christ {et al.}.
  • 关键词:Consistent Digital Line Segments; Digital Geometry; Computer Vision
国家哲学社会科学文献中心版权所有