首页    期刊浏览 2024年11月14日 星期四
登录注册

文章基本信息

  • 标题:Topological Data Analysis with Bregman Divergences
  • 本地全文:下载
  • 作者:Herbert Edelsbrunner ; Hubert Wagner
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:39:1-39:16
  • DOI:10.4230/LIPIcs.SoCG.2017.39
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that the framework of topological data analysis can be extended from metrics to general Bregman divergences, widening the scope of possible applications. Examples are the Kullback-Leibler divergence, which is commonly used for comparing text and images, and the Itakura-Saito divergence, popular for speech and sound. In particular, we prove that appropriately generalized Cech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized Cech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory.
  • 关键词:Topological data analysis; Bregman divergences; persistent homology; proximity complexes; algorithms
国家哲学社会科学文献中心版权所有