首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension
  • 本地全文:下载
  • 作者:Khaled Elbassioni
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:40:1-40:15
  • DOI:10.4230/LIPIcs.SoCG.2017.40
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of finding a small hitting set in an infinite range space F=(Q,R) of bounded VC-dimension. We show that, under reasonably general assumptions, the infinite-dimensional convex relaxation can be solved (approximately) efficiently by multiplicative weight updates. As a consequence, we get an algorithm that finds, for any delta>0, a set of size O(s_F(z^*_F)) that hits (1-delta)-fraction of R (with respect to a given measure) in time proportional to log(1/delta), where s_F(1/epsilon) is the size of the smallest epsilon-net the range space admits, and z^*_F is the value of the fractional optimal solution. This exponentially improves upon previous results which achieve the same approximation guarantees with running time proportional to poly(1/delta). Our assumptions hold, for instance, in the case when the range space represents the visibility regions of a polygon in the plane, giving thus a deterministic polynomial-time O(log z^*_F)-approximation algorithm for guarding (1-delta)-fraction of the area of any given simple polygon, with running time proportional to polylog(1/delta).
  • 关键词:VC-dimension; approximation algorithms; fractional covering; multiplicative weights update; art gallery problem; polyhedral separators; geometric cove
国家哲学社会科学文献中心版权所有