首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Constrained Triangulations, Volumes of Polytopes, and Unit Equations
  • 本地全文:下载
  • 作者:Michael Kerber ; Robert Tichy ; Mario Weitzer
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:77
  • 页码:46:1-46:15
  • DOI:10.4230/LIPIcs.SoCG.2017.46
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a polytope P in R^d and a subset U of its vertices, is there a triangulation of P using d-simplices that all contain U? We answer this question by proving an equivalent and easy-to-check combinatorial criterion for the facets of P. Our proof relates triangulations of P to triangulations of its "shadow", a projection to a lower-dimensional space determined by U. In particular, we obtain a formula relating the volume of P with the volume of its shadow. This leads to an exact formula for the volume of a polytope arising in the theory of unit equations.
  • 关键词:constrained triangulations; simplotopes; volumes of polytopes; projections of polytopes; unit equations; S-integers
国家哲学社会科学文献中心版权所有