首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Word2Vecに基づく購買履歴からのアイテムベクトル学習
  • 本地全文:下载
  • 作者:Natsuko NADOYAMA ; Kazushi OKAMOTO
  • 期刊名称:知能と情報
  • 印刷版ISSN:1347-7986
  • 电子版ISSN:1881-7203
  • 出版年度:2017
  • 卷号:29
  • 期号:3
  • 页码:579-585
  • DOI:10.3156/jsoft.29.3_579
  • 出版社:Japan Society for Fuzzy Theory and Intelligent Informatics
  • 摘要:Word2Vec, a distributed representation method in natural language processing, is applied to purchase data in order to achieve item vector learning with low-computational cost. We perform an experiment with real POS data, and it validates how window size and dimension parameters and input purchase data format affect item vector learning. The experimental results suggest that learned item vectors within same category are located neighborhoods on the feature space under the following conditions: window size is as large as possible; dimension is more than 40; input data format is based on item variation.
  • 关键词:recommender system ; collaborative filtering ; purchase data ; item vector ; distributed representation
国家哲学社会科学文献中心版权所有