首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Using PCA and Factor Analysis for Dimensionality Reduction of Bio-informatics Data
  • 本地全文:下载
  • 作者:M. Usman Ali ; Shahzad Ahmed ; Javed Ferzund
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:5
  • DOI:10.14569/IJACSA.2017.080551
  • 出版社:Science and Information Society (SAI)
  • 摘要:Large volume of Genomics data is produced on daily basis due to the advancement in sequencing technology. This data is of no value if it is not properly analysed. Different kinds of analytics are required to extract useful information from this raw data. Classification, Prediction, Clustering and Pattern Extraction are useful techniques of data mining. These techniques require appropriate selection of attributes of data for getting accurate results. However, Bioinformatics data is high dimensional, usually having hundreds of attributes. Such large a number of attributes affect the performance of machine learning algorithms used for classification/prediction. So, dimensionality reduction techniques are required to reduce the number of attributes that can be further used for analysis. In this paper, Principal Component Analysis and Factor Analysis are used for dimensionality reduction of Bioinformatics data. These techniques were applied on Leukaemia data set and the number of attributes was reduced from to.
  • 关键词:Bioinformatics; Statistics; Microarray; Leukaemia; Feature Selection; Statistical tests; PCA; Factor Analysis; R tool
国家哲学社会科学文献中心版权所有