首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Implementation of the RN Method on FPGA using Xilinx System Generator for Nonlinear System Regression
  • 本地全文:下载
  • 作者:Intissar SAYEHI ; Okba TOUALI ; T. Saidani
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2017
  • 卷号:8
  • 期号:6
  • DOI:10.14569/IJACSA.2017.080619
  • 出版社:Science and Information Society (SAI)
  • 摘要:In this paper, we propose a new approach aiming to ameliorate the performances of the regularization networks (RN) method and speed up its computation time. A considerable rapidity in totaling calculation time and high performance were accomplished through conveying difficult calculation charges to FPGA. Using Xilinx System Generator, a successful HW/SW Co-Design was constructed to accelerate the Gramian matrix computation. Experimental results involving two real data sets of Wiener-Hammerstein benchmark with process noise prove the efficiency of the approach. The implementation results demonstrate the efficiency of the heterogeneous architecture, presenting a speed-up factor of 40-50 orders of time, comparing to the CPU simulation.
  • 关键词:Machine learning; Reproducing Kernel Hilbert Spaces (RKHS); regularization networks; FPGA; HW/SW Co-simulation; systolic array architecture; PT326; Wiener-Hammerstein benchmark
国家哲学社会科学文献中心版权所有