首页    期刊浏览 2024年11月15日 星期五
登录注册

文章基本信息

  • 标题:Object Detection and Semantic Segmentation using Neural Networks
  • 本地全文:下载
  • 作者:R.Karthika ; S. N Santhalakshmi
  • 期刊名称:International Journal of Computer Trends and Technology
  • 电子版ISSN:2231-2803
  • 出版年度:2017
  • 卷号:47
  • 期号:2
  • 页码:95-100
  • DOI:10.14445/22312803/IJCTT-V47P113
  • 出版社:Seventh Sense Research Group
  • 摘要:Semantic segmentation and object detection are two most common tasks in the field of digital image processing, classification and segmentation. The object detection in repetition domain will be approached to segment objects from foreground with absence of background noise. This work has introduced one automatically detecting an object to increase the accuracy and yield and decrease the diagnosis time. This proposed method represents image Segmentation and Object Detection using NN classifier. The first step for input image segmentation and feature extracted from segmented image using NN classifier. The goal of Classification is to find Object from input ones. At the end it is shown the object detected image. The best results can be achieved by this proposed image segmentation and classification image.
  • 关键词:Thresholding; GLSM; ProbabilisticNeural Networks; Threshold; eigen; Palmprint; vector clustering; kernel tric; semantic segmentation; Down sampling; neural networks; Perceptron; Discrete wavelet; Modeling; simulation; andprototyping; vectors.
国家哲学社会科学文献中心版权所有