期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2017
卷号:114
期号:28
页码:7246-7249
DOI:10.1073/pnas.1706040114
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The amplitude of the photoacoustic effect for an optical source moving at the sound speed in a one-dimensional geometry increases linearly in time without bound in the linear acoustic regime. Here, use of this principle is described for trace detection of gases, using two frequency-shifted beams from a CO2 laser directed at an angle to each other to give optical fringes that move at the sound speed in a cavity with a longitudinal resonance. The photoacoustic signal is detected with a high- Q , piezoelectric crystal with a resonance on the order of 443 kHz. The photoacoustic cell has a design analogous to a hemispherical laser resonator and can be adjusted to have a longitudinal resonance to match that of the detector crystal. The grating frequency, the length of the resonator, and the crystal must all have matched frequencies; thus, three resonances are used to advantage to produce sensitivity that extends to the parts-per-quadrillion level.