首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:From LZ77 to the Run-Length Encoded Burrows-Wheeler Transform, and Back
  • 本地全文:下载
  • 作者:Alberto Policriti ; Nicola Prezza
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:78
  • 页码:17:1-17:10
  • DOI:10.4230/LIPIcs.CPM.2017.17
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Transform (RLBWT) are two important tools in text compression and indexing, being their sizes z and r closely related to the amount of text self-repetitiveness. In this paper we consider the problem of converting the two representations into each other within a working space proportional to the input and the output. Let n be the text length. We show that RLBWT can be converted to LZ77 in O(n log r) time and O(r) words of working space. Conversely, we provide an algorithm to convert LZ77 to RLBWT in O(n(log r + log z)) time and O(r+z) words of working space. Note that r and z can be constant if the text is highly repetitive, and our algorithms can operate with (up to) exponentially less space than naive solutions based on full decompression.
  • 关键词:Lempel-Ziv; Burrows-Wheeler transform; compressed computation; repetitive text collections
国家哲学社会科学文献中心版权所有