首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Approximate Cover of Strings
  • 本地全文:下载
  • 作者:Amihood Amir ; Avivit Levy ; Ronit Lubin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:78
  • 页码:26:1-26:14
  • DOI:10.4230/LIPIcs.CPM.2017.26
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Regularities in strings arise in various areas of science, including coding and automata theory, formal language theory, combinatorics, molecular biology and many others. A common notion to describe regularity in a string T is a cover, which is a string C for which every letter of T lies within some occurrence of C. The alignment of the cover repetitions in the given text is called a tiling. In many applications finding exact repetitions is not sufficient, due to the presence of errors. In this paper, we use a new approach for handling errors in coverable phenomena and define the approximate cover problem (ACP), in which we are given a text that is a sequence of some cover repetitions with possible mismatch errors, and we seek a string that covers the text with the minimum number of errors. We first show that the ACP is NP-hard, by studying the cover-size relaxation of the ACP, in which the requested size of the approximate cover is also given with the input string. We show this relaxation is already NP-hard. We also study another two relaxations of the ACP, which we call the partial-tiling relaxation of the ACP and the full-tiling relaxation of the ACP, in which a tiling of the requested cover is also given with the input string. A given full tiling retains all the occurrences of the cover before the errors, while in a partial tiling there can be additional occurrences of the cover that are not marked by the tiling. We show that the partial-tiling relaxation has a polynomial time complexity and give experimental evidence that the full-tiling also has polynomial time complexity. The study of these relaxations, besides shedding another light on the complexity of the ACP, also involves a deep understanding of the properties of covers, yielding some key lemmas and observations that may be helpful for a future study of regularities in the presence of errors.
  • 关键词:periodicity; quasi-periodicity; cover; approximate cover
国家哲学社会科学文献中心版权所有