首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Inapproximability of the Independent Set Polynomial Below the Shearer Threshold
  • 本地全文:下载
  • 作者:Andreas Galanis ; Leslie Ann Goldberg ; Daniel Stefankovic
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2017
  • 卷号:80
  • 页码:28:1-28:13
  • DOI:10.4230/LIPIcs.ICALP.2017.28
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problem of approximately evaluating the independent set polynomial of bounded-degree graphs at a point lambda or, equivalently, the problem of approximating the partition function of the hard-core model with activity lambda on graphs G of max degree D. For lambda>0, breakthrough results of Weitz and Sly established a computational transition from easy to hard at lambda_c(D)=(D-1)^(D-1)/(D-2)^D, which coincides with the tree uniqueness phase transition from statistical physics. For lambda =3, for all lambda -lambda*(D), establishes a phase transition for negative activities. In fact, we now have the following picture for the problem of approximating the partition function with activity lambda on graphs G of max degree D. 1. For -lambda*(D) lambda_c(D), the problem is NP-hard. Rather than the tree uniqueness threshold of the positive case, the phase transition for negative activities corresponds to the existence of zeros for the partition function of the tree below -lambda*(D).
  • 关键词:approximate counting; independent set polynomial; Shearer threshold
国家哲学社会科学文献中心版权所有